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Abstract. We study the asymptotics of the largest zeros of the Wilson,q−1-Hermite andq-
Laguerre polynomials using two distinct techniques. The first is based on the Coulomb fluid
technique developed in a previous paper where the primary input is the weight function, while
the second uses the method of chain sequences which supplies inequalities for the largest zeros;
using the recurrence coefficients. We also investigate the asymptotics of the largest zeros of the
polynomials orthogonal to the weight functions exp[−c (logx)m] for c > 0 andm a positive
even integer.

1. Introduction

The theory of random matrices which originally arose from statistical modelling of the
energy levels of heavy nuclei, has recently seen application in other diverse areas of physics
such as quantum chaos [2], transport in disordered disordered solids [8] and low-dimensional
string theory [3]. In pure mathematics, the Gaussian unitary ensemble, a special case of
Hermitean random matrices, is important in the study of the zeros of the Riemann zeta-
function [26].

In the theory of random matrices a central object of interest, denoted asE[J ], is the
probability that an interval,J (a subset ofR) is free of eigenvalues. For complex Hermitean
matrices, this quantity can be expressed as the Fredholm determinant of a certain integral
operator over the intervalJ [23]:

E[J ] = det(I − K̂J )
whereK̂ has the kernel

K(x, y) =
√
w(x)w(y)

N−1∑
j=0

pj (x)pj (y).

Here {pj (x) : 0 6 j 6 N} is the family of polynomials orthonormal with respect to the
weight functionw(x):∫

w(x) pj (x)pk(x) dx = δj,k
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where the integral is over the support ofw(x), andw(x) is related to the potential,u(x),
of the random matrix problem in the eigenvalue representation, through the relationship,
w(x) = exp[−u(x)].

For J = (s,∞), E[s,∞] gives the probability distribution of the largest eigenvalue,
s, under an appropriate scaling. With this in mind we are led to the ongoing program of
establishing the ‘edge’ asymptotic behaviour of a large class of orthogonal polynomials. In
order to compute such asymptotics, rather precise knowledge is required on the largest zeros
of the associated orthogonal polynomials. This will be explained later. We shall usex ≈ y
to meany is an approximation tox while f (x) ∼ g(x) asx → a to meanf (x)/g(x)→ 1
asx → a.

It is known from the important work of Ullman, Saff, Mhaskar, Rakhmanov, Lubinsky,
Totik, Van Assche, Levin and others that the distribution function of the zeros denotes as
σ(x) can be obtained from the following minimization problem:

min
σ
F [σ ] subject to

∫
J

σ (x) dx = N (1.1)

where

F [σ ] =
∫
J

u(x) σ (x) dx −
∫
J

∫
J

σ (x) ln |x − y|σ(y) dy dx. (1.2)

Here exp[−u(x)] = w(x) is the weight function andN is the degree of polynomials
orthonormal with respect to weightw(x):∫

K

pM(x) pN(x) w(x) dx = δM,N (1.3)

whereK is the interval of orthogonality. In this paper we shall focus our attention on
cases for whichK is the real line and positive real line. Note thatσ(·), the zero counting
function, is positive over its supportJ . The minimizing functionσ satisfies a singular
integral equation

u′(x) = P
∫ eR

eL

σ (y)

x − y dy (1.4)

where the intervalJ is (eL, eR). In the examples to be given belowJ is either(0, b) or
(−b, b) and P denotes the principal value. The edge parameterb is determined by the
normalization condition

∫
J
σ (x) dx = N . The solution of the integral equation reads

σ(x) = 1

2π2

√
eR − x
x − eL P

∫ eR

eL

u′(y)
y − x

√
y − eL
eR − y dy x ∈ (eL, eR). (1.5)

The functionσ(x) given by (1.5) is indeed the potential theoretic approximation of

σN(x) := w(x)
N−1∑
n=0

[pn(x)]
2

expected to be valid for sufficiently largeN . This technique was developed by Dyson [11]
on certain random matrix ensembles in the 1960s and has recently found application in
other matrix ensembles [4–8].

As an example takeu(x) = x2 and K = (−∞,∞). In this case the orthogonal
polynomials are the well known Hermite polynomials. A simple calculation using (1.5)
with J = (−b, b) gives

σ(x) = 1

π

√
b2− x2 x ∈ (−b, b) (1.6)
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with b = √2N from the normalization condition. Sinceσ(±b) = 0 in (1.6), the parameter
b defines the edges beyond which the density vanishes. To a crude approximationb can
be identified as the largest zero. Our contribution to this method is the observation that a
further refinement to the largest zero can be obtained from the formula

1=
∫ b

a

σ (x) dx (1.7)

in the limits b → ∞ and a → b. The a in (1.7) is a better approximation to the largest
zero thanb is. Thus equation (1.7) supplies the asymptotics of the largest zero. To see how
this works, we first determine the behaviour ofσ(x) nearx = b. This is

σ(x) ∼ G(b)√b − x as x → b− (1.8)

where in the Hermite case

G(b) :=
√

2b

π
.

We will show in the case of other sequences of polynomials, to be studied later, that the
density has the above ‘edge’ behaviour.

A simple integration using (1.8) gives

a ∼ b −
(

3

2G(b)

)2/3

. (1.9)

We remark that sinceG(b) > 0 the crude estimateb for the largest zero is larger than the
refinement given in (1.9).

In the Hermite example, we find the following approximation to the largest zero:

a ∼
√

2N − c1N
−1/6 c1 ≈

(
3π/27/4

)2/3
. (1.10)

Observe that the first term agrees exactly with the result in Szegő [29], while the numerical
value of the constantc1, 1.98752. . ., comes close to that obtained using the Sturm
comparison theorem based on the differential equation satisfied by the Hermite polynomials,
1.63329. . . . From this example it is apparent that the Coulomb fluid method does not give
the correct constant in the second term in the asymptotic expansion of the extreme zeros of
orthogonal polynomials. The correct value forc1 is 6−1/3i1/21/6, wherei1 is the positive
smallest zero of the Airy function.

The ‘edge’ or uniform asymptotics of the Hermite polynomials is obtained in the limits,
N →∞, x →√2N and such thatN1/6(

√
2N − x) remains bounded. Specifically we let

x =
√

2N − c t N−1/6.

From differential equation techniques [29, equation (8.22.13)] it is known that

e−x
2/2 pN(x) = 31/3 π−3/42(2N+1)/4

√
N !N−1/2 [Ai (t)+O(N−2/3)]

holds withc = 2−1/23−1/3. Here the limit denotes the double limits indicated above. Indeed
we recognize that when the density behaves as in (1.8) asx → b−, the appropriate parameter
is

t := c[G(b)]3/2(b − x). (1.11)

Based on the above observation, we conjecture that the following universal formula holds
for the edge asymptotics for a class of orthogonal polynomials.
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Conjecture 1.If, as x → b− the densityσ satisfies

σ(x) ≈ G(b)√b − x (1.12)

then √
w(x)pN(x) ∼ dNAi(t) (1.13)

where t is defined by (1.11) anddN is a constant depending only onN andAi(t) is the
Airy function.

The above class of orthogonal polynomials, namely the class for which (1.12) holds,
contains at least the Freud weights

w(x) := exp(−|x|α) α > 0 (1.14)

and orthogonal polynomials whose weight function is of the form e−Q(x), where
logQ(x)/ log |x| has limits asx →±∞.

There is also a class of orthogonal polynomials which arises from the double scaling
limit in certain problems in the theory of two-dimensional quantum gravity [3], whose
density function,σ(x), has the following edge behaviour:

σ(x) ∼ Ak b1/2−k (b − x)k+1/2 x ≈ b k = 0, 1, 2, . . . .

HereAk is a positive constant depending onk and b = Bk
√
N , is positive. Using the

procedure described above (see also [5, 4]) we find that the largest zero in this case is

a ∼ b − Ck b(2k−1)/(2k+3)

whereCk has the approximate value

Ck ≈
(

2k + 3

2Ak

)2/(2k+3)

.

By introducing a scaling variable which generalizes the previoust , we expect the asymptotic
relation √

w(x)pN(x) ∼ DN 9(s) (1.15)

with

s := A2/(2k+3)
k b(1−2k)/(2k+3)(b − x)

to hold, where9(s) is a solution of the following differential equation:(
d2

ds2
+ q(s)

)
y(s) = 0

and the potentialq(s) having the large-s behaviour

q(s) ∼ s2k+1+O(s2k) as s →∞. (1.16)

In this paper we employ the Coulomb fluid approximation to determine the large-N

behaviour of the largest zeros of the Wilson polynomials [31],q-Laguerre polynomials [25,
13] andq−1-Hermite polynomials [1, 16]. The Wilson polynomials are treated in section 2
and the limiting behaviour of their zeros resembles that of the Laguerre polynomials
(Szeg̋o [29]). The zeros of theq-Laguerre polynomials are well separated, i.e. the ratio
of two consecutive zeros is at leastq [25], and this is reflected in the asymptotic formula
of their largest zeros which is derived in section 3. Our asymptotic result even exhibits the
correct limiting behaviour asq → 1−. In section 4 the large-degree behaviour of the largest
zeros of theq−1-Hermite polynomials is analysed and again has the correct behaviour as
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q → 1−. In section 5 we use chain sequences [10, 15] to give sharp upper bounds for the
largest zeros ofq-Laguerre andq−1-Hermite polynomials.

Section 6 contains large-degree asymptotics of the largest zeros of the polynomials
orthogonal with respect the weight functions

wm(x) := exp

[ −(ln x)m
m(− ln q)m−1

]
(1.17)

wherem is an even positive integer,q ∈ (0, 1) andx ∈ (0,∞). The asymptotics are carried
out using the Coulomb fluid method. Lubinsky and Sharif [21] have already determined
the first term in this asymptotic expansion. Our determination of the second term gave the
surprising result that the casem = 2 is very different from the rest of the casesm > 0, but
m 6= 2.

We shall call these weights ‘the weak exponential weights’, for lack of a better name.
Such a class of weight function form = 2 arises from the study of electronic transport in
disordered solids [8].

The Coulomb fluid method is not mathematically rigorous but seems to be very powerful
and accurate. It may be appropriate here to quote Dyson’s description of the Coulomb fluid
method [11, page 158]:

These assumptions. . . can be summarized in the single statement that for largeN

the Coulomb gas obeys the laws of classical thermodynamics. The assumption. . .

means that the free energy density at any point being a function of the local density
and temperature alone. To a physicist these assumptions are so hallowed by custom
that they hardly require justification. . .

A birth and death process gives rise to a sequence of orthogonal polynomials{Fn(x)}
generated by

µn+1Fn+1(x) = [λn + µn − x] Fn(x)− λn−1Fn−1(x) (1.18)

with

F0(x) := 1, F1(x) = [λ0+ µ0− x]/λ0. (1.19)

Orthogonal polynomials that arise from birth and death processes have their zeros in(0,∞).
In [7] we reformulated a powerful theorem of Maté et al [22] and established the following
theorem.

Theorem 1.1.Let {Fn} be a family of birth and death process polynomials satisfying (1.18)
and (1.19) and assume

λn = a2 n2δ[1+ o(n−2/3)] (1.20)

and

µn = a2 n2δ[1+ o(n−2/3)] (1.21)

asn→∞ and assumeδ > 0. Let the zeros ofFn be arranged as

Xn,1 > Xn,2 > · · · > Xn,n > 0 (1.22)

and assumeµ0 = 0. Furthermore, assume that{in}∞1 are the positive zeros of the Airy
function arranged in increasing order. Then we have√

Xn,k = 2a nδ
[
1− 1

2δ
2/3 3−1/3ikn

−2/3+ o(n−2/3)
]

(1.23)

or equivalently√
Xn,k =

√
2(λn + µn)

[
1− 1

2
δ2/3 3−1/3ik

(
λn + µn

2a2

)−1/(3δ)

+ o(n−2/3)

]
. (1.24)

This theorem is relevant to our treatment of the zeros of the Wilson polynomials in section 2.
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2. Wilson polynomials

The Wilson polynomials are orthogonal with respect to the weight function

w(x, a1, a2, a3, a4) =
∏4
j=10(aj + i

√
x)0(aj − i

√
x)

0(2i
√
x)0(−2i

√
x)

x ∈ [0,∞) aj ∈ R. (2.1)

For the Wilson weight function we find

u′(x) = − 1

w

dw

dx
= i√

x
[ψ(2i

√
x)− ψ(−2i

√
x)] − i√

x

4∑
j=1

[ψ(aj + i
√
x)− ψ(aj − i

√
x)]

=
4∑

j=1

∞∑
n=0

1

x + (aj + n)2 −
∞∑
n=0

1

x + n2/4
(2.2)

whereψ(·) is the di-Gamma function which has the representation

ψ(x)− ψ(y) =
∞∑
n=0

[
1

n+ y −
1

n+ x
]
.

The solution to the integral equation (1.4) is

σ(x) = 1

2π2
P

∫ b

0

1

y − x
√

y

b − y
∞∑
n=0

( 4∑
j=1

1

y + (aj + n)2 −
1

y + n2/4

)
. (2.3)

An integration using

P

∫ b

0

dy

y − x
√

y

b − y
1

y + c =
πc

b + c
1

x + c for c > 0

gives the following representation forσ :

σ(x) = 1

2π

√
b − x
x

∞∑
n=0

[ 4∑
j=1

1

x + (aj + n)2
aj + n√

b + (aj + n)2
− n/2√

b + n2/4

1

x + n2/4

]
(2.4)

for x ∈ (0, b). Approximating the sum in (2.4) by an integral, we find, using Mathematica,
that σ(x) is approximately

σ(x) ∼ 1

2π
√
x

(
1

2

4∑
j=1

ln

[2(b − x)+ 2
√
b + a2

j + x + aj
x + a2

j

]
− ln

[
2b + 2

√
b(b − x)
x

])
.

(2.5)

The normalization condition in (1.1) becomes

N =
∫ b

0
σ(x) dx = 1

2

[ 4∑
j=1

∞∑
n=0

(
1− aj + n√

b + (aj + n)2
)
−
∞∑
n=0

(
1− n/2√

b + n2/4

)]

≈ 1

2

[ 4∑
j=1

∫ ∞
aj

(
1− t√

b2+ t2
)

dt − 2
∫ ∞

0

(
1− t√

b + t2/4

)
dt

]

= 1

2

[ 4∑
j=1

(√
b + a2

j − aj
)
− 2
√
b

]
. (2.6)
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In other wordsN andb are related through the algebraic equation

2

(
N + 1

2

4∑
j=1

aj

)
=

4∑
j=1

√
b + a2

j − 2
√
b.

This gives the following asymptotic form of the dependence ofb onN , and for sufficiently
largeb andN we find

b =
(
N + 1

2

4∑
j=1

aj

)2

+O(1/N). (2.7)

We obtainG(b) for the largest zero, by expanding the density nearb

G(b) = 1

2π
√
b

( 4∑
j=1

1√
b + a2

j

− 2√
b

)
∼ 1

πb
. (2.8)

Thus the largest zero of the Wilson polynomials obeys the asymptotic approximation

a ∼
(
N +

4∑
j=1

aj

)2

− c2

(
N + 1

2

4∑
j=1

aj

)4/3

(2.9)

and

c2 ≈ (3π/2)2/3. (2.10)

As we saw in (1.11), the Coulomb fluid approximation for the Hermite polynomials gave

c1 = (3π/27/4)2/3

while the correct value is

c1 = i1 6−1/3 2−1/6 (2.11)

and i1 is the positive smallest zero of the Airy function. This suggests that the Coulomb
fluid approximation reads 6−1/3i1 as(3π)2/3/2. With this analogy it is plausible that

c2 = 3−1/3i1. (2.12)

This would lead to

a =
(
N +

4∑
j=1

aj

)2

− 3−1/3i1

(
N + 1

2

4∑
j=1

aj

)4/3

+ o(N4/3). (2.13)

The Wilson polynomials [31] come from a birth and death process with

λn = (a1+ a2+ n)(a1+ a3+ n)(a1+ a4+ n)(s + n− 1)

(s + 2n− 1)(s + 2n)
(2.14)

µn = n(a2+ a3+ n)(a2+ a4+ n)(a3+ a4+ n)
(s + 2n− 1)(s + 2n− 2)

(2.15)

for n > 0, wherea1, a2, a3, a4 are positive parameters and

s :=
4∑

j=1

aj . (2.16)

Thus a = 1
2, δ = 1 in (1.20) and (1.21), and forXn,k(W), the zeros of the Wilson

polynomials, we obtain

Xn,k(W) = (n+ s)2− 3−1/3(n+ s)4/3ik + o(n4/3). (2.17)
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In [7] we conjectured that√
Xn,k(W) = (n+ s)− 1

2 3−1/3(n+ s)1/3 {ik + εn} (2.18)

whereεn is positive for alln, n > 0 andεn → 0 asn → ∞. Of course, our asymptotic
result (2.16) shows thatεn→ 0 asn→∞.

3. q-Laguerre polynomials

The q-Laguerre polynomials were introduced by Hahn and their Hamburger moment
problem was investigated by Moak [25] and completed by Ismail and Rahman in [17].
They are orthogonal with respect to the weight function

w(x) := 1

(−(1− q)x; q)∞ x ∈ (0,∞) (3.1)

where 0< q < 1 and theq-shifted factorials are

(α; q)0 := 1 (α; q)n :=
n∏
k=1

(1− αqk−1) n = 1, 2, . . . or∞ (3.2)

(see [13]). Note that this is related to an indeterminate moment problem for which the four
entire functions that gives the Nevanlinna parametrization of the measures of orthogonality
have been found recently, [25, 17]. We shall determine the largest zero of theq-Laguerre
polynomials using the technique mentioned in section 1. Theq-Laguerre polynomials are
also of interest in certain physical applications [9].

First we find

u′(x) := −w
′(x)
w(x)

=
∞∑
n=0

1

x + an (3.3)

where

an := 1

(1− q)qn . (3.4)

We also use the parametrization

q = e−β with 0< β <∞. (3.5)

The functionσ(x) now reads

σ(x) = 1

2π

√
b − x
x

∞∑
n=0

√
an

an + b
1

an + x 0< x < b. (3.6)

The functionG(b) is

G(b) = 1

2π
√
b

∞∑
n=0

√
an

(an + b)3/2

≈ 1

2πβ
√
b

∫ ∞
1/(1−q)

du√
u(u+ b)3/2

= 1

πβb3/2
lim
R→∞

[√
R

b + R −
√

1

1+ (1− q)b
]
.



Largest zeros of some orthogonal polynomials 5533

In the above computation we have replaced the sum overn by an integral. Thus

G(b) ≈ 1

πβb3/2

[
1−

√
1

1+ (1− q)b

]
. (3.7)

We now determineb as a function ofN . From the normalization condition in (1.1) we
obtain the following from (3.6):

N =
∫ b

0
σ(x) dx = 1

2

∞∑
n=0

(
1−

√
an

an + b
)

≈ 1

2β

∫ ∞
1

du

u

(
1−

√
u

u+ (1− q)b
)

= lim
R→∞

[
ln

R

(
√
R +√R + (1− q)b)2 + 2 ln(1+

√
1+ (1− q)b)

]

= 1

β
ln

(
1+√1+ (1− q)b

2

)
.

Thus

b = 4(q−2N − q−N)
1− q . (3.8)

Note that we recover the edge parameter for the Laguerre polynomials in the limitq → 1−.
Indeed we have

lim
q→1−

b = 4N. (3.9)

Equations (1.9) and (3.7) give

a ≈ b − (3πβ/2)2/3
(

1− 1√
1+ b(1− q)

)−2/3

b. (3.10)

Observe that in this case the correction term is of the same order as the main term.
This seems to be the typical behaviour when the zeros have exponential growth or
when the weight function behaves like exp(−c| logx|α), for c > 0 and α > 0. One
possible explanation is that the Coulomb fluid method givesb as function ofN , say
b ≈ C exp(f (N)). The next approximation (1.7) basically changesN to N + h(N),
say whereh(N) = o(N). This may have the effect of only changing the multiplicative
constantC. For example withf (N) = N , g(N) = c, a constant, the effect of the second
approximation will be to replaceC by Cec.

We now use a different approximation of the sum in the equation following (3.7). We
utilize theq-integral [13]∫ a

0
f (x) dqx :=

∞∑
n=0

f (aqn) (aqn − aqn+1). (3.11)

The q-integral is just an infinite Riemann sum using the evaluation points{aqn : 0 6 n <
∞}. We go back to the equation definingN and proceed as follows:

N =
∫ b

0
σ(x) dx = 1

2

∞∑
n=0

[
1− 1√

1+ b(1− q)qn
]
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= 1

2(1− q)
∞∑
n=0

[
1− (1+ b(1− q)qn)−1/2

] qn(1− q)
qn

=:
1

2(1− q)
∫ 1

0

[
1− (1+ b(1− q)u)−1/2

] dqu

u
. (3.12)

Now takingq to be near 1, we approximate theq-integral by a Lebesgue integral and obtain

N ≈
∫ 1

0

[
1− (1+ b(1− q)u)−1/2

] du

u

= 1

1− q
∫ √1+b(1−q)

1

dv

1+ v .
Therefore

N ≈ ln

[
1+ (1+ b(1− q))1/2

2

]
. (3.13)

This results in the following approximation tob:

b ≈ 4eN(1−q)
eN(1−q) − 1

1− q . (3.14)

The quantityG(b) can also be evaluated in the same approximation:

G(b) = 1

2
√
b

∫ 1

0

dqu

[1+ b(1− q)u]3/2

and we obtain

G(b) ≈ 1

πb3/2(1− q)
[
1− (1+ b(1− q))−1/2

]
. (3.15)

Note that this is same as that obtained previously by approximating the sum as an integral
provided we identifyβ with 1− q for q is close to 1.

Thus for sufficiently largeb andq close to 1, we have

a ≈ b −
[

3π(1− q)
2(1− (1+ b(1− q))−1/2)

]2/3

b (3.16)

with b given by (3.8) or (3.14).
We remark here that the edge parameter,b, obtained by the first method is larger than

that obtained using the second method, both of which compare favourably with the chain
sequence estimate to be presented in section 5. This is so since eN(1−q)(eN(1−q) − 1) <
q−2N − q−N if and only if (eN(1−q) − q−N)(eN(1−q) + q−N − 1) < 0, which is equivalent
to eN(1−q) < q−N , namelyq e1−q < 1. The last inequality is 1− e−β < β and obviously
holds for allβ > 0.

Here again the magic constant(3π)2/3 appears and the correct value may be that we
replace(3π)2/3 by 2(6−1/3)i1 but further numerical evidence is needed.

4. q−1-Hermite polynomials

Ismail and Masson [16] proved that theq−1-Hermite polynomials are orthogonal with respect
to the weight function

w(x; η) := e2η1 sinη2 coshη1(q, −qe2η1,−qe−2η1; q)∞|(qe2iη2; q)∞|2
π |(eξ+η,−eη−ξ ,−qeξ−η, qe−ξ−η; q)∞|2 (4.1)
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where

x = sinhξ η = η1+ iη2 η1 ∈ (−∞,∞) 0< η2 < π/2. (4.2)

This is an interesting example because the weight function depends on the two parameters
η1 andη2, while the orthogonal polynomials, and hence their zeros, are independent of these
parameters.

In this case

σ(x) = 1

2π2

√
b − x
x + bP

∫ b

−b

−w′(y; η)
w(y; η)(y − x)

√
y + b
b − y dy. (4.3)

As in the case ofq-Laguerre polynomials we set

q = e−β (4.4)

and apply

(eξ+η,−eη−ξ ; q)∞ =
∞∏
n=0

[
1− 2qneηx − q2ne2η

]

(−qeξ−η, qe−ξ−η; q)∞ =
∞∏
n=0

[
1+ 2qn+1e−ηx − q2n+2e−2η

]
to find from (4.1) that, for realx, we have

−w
′(x; η)
w(x; η) =

∞∑
n=0

[
1

x − sinh(nβ − η) +
1

x + sinh((n+ 1)β + η)
]
+ (η→ η)

=
∞∑
−∞

[
1

x − sinh(nβ − η) +
1

x − sinh(nβ − η)
]
. (4.5)

From (4.3) and (4.5) it is easy to obtain

σ(x) = 1

2π2

√
b − x
x + b

∞∑
−∞

P

∫ b

−b

y + b√
b2− y2

[
1

y − sinh(nβ − η) + η→ η

]
dy

y − x . (4.6)

If Im a 6= 0 then

P

∫ b

−b

1

y − a
y + b√
b2− y2

dy

y − x = P
∫ b

−b

1√
b2− y2

[
1+ a + b

y − a
]

dy

y − x

= (a + b)P
∫ b

−b

1

(y − a)
√
b2− y2

dy

y − x

= a + b
x − aP

∫ b

−b

[
1

y − x −
1

(y − a)
]

dy√
b2− y2

= a + b
x − a

∫ b

−b

dy

(a − y)
√
b2− y2

= π

x − a

√
a + b
a − b .
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Thus we have proved

P

∫ b

−b

1

y − a
y + b√
b2− y2

dy

y − x =
π

x − a

√
a + b
a − b . (4.7)

Therefore

σ(x) = 1

2π

√
b − x
x + b

∞∑
−∞

[√
b + sinh(nβ − η)
sinh(nβ − η)− b

1

x − sinh(nβ − η) + η→ η

]
. (4.8)

We similarly evaluate
∫ b
−b σ (x) dx and the result is

N =
∫ b

−b
σ (x) dx = 1

2

∞∑
−∞

[
1−

√
b + sinh(nβ − η)
sinh(nβ − η)− b

]
+ η→ η. (4.9)

We now approximate the sums in (4.9) by integrals, i.e. we apply

∞∑
−∞

[
1−

√
b + sinh(nβ − η)
sinh(nβ − η)− b

]
≈ 1

β

∫ ∞
−∞

[
1−

√
b + sinh(u− η)
sinh(u− η)− b

]
du

= 1

β

∫ ∞−iη2

−∞−iη2

[
1−

√
b + sinhu

sinhu− b
]

du (4.10)

whereη2 is as in (4.2). We also have another sum as in (4.10) butη is replaced byη, hence
the resulting integral hasη2 replaced by−η2. After a change of variableu→ −u we can
combine the two approximating integrals and establish

βN ≈
∫ ∞−iη2

−∞−iη2

[
1− sinhu√

sinh2 u− b2

]
du

= lim
R→∞

[
u− cosh−1

(
coshu√
1+ b2

)]R−iη2

−R−iη2

= ln(1+ b2). (4.11)

This shows that

b ≈
√
q−N − 1. (4.12)

Observe that the estimate (4.12) is independent ofη1 and η2, as it should be. From the
three-term recurrence relations of theq−1-Hermite polynomials{hn(x|q)} in [1] or [16]

2xhn(x|q) = hn+1(x|q)+ q−n(1− qn)hn−1(x|q) (4.13)

the recurrence relation of the Hermite polynomials{Hn(x)} in [29], for example

2xHn(x) = Hn+1(x)+ 2nHn−1(x) (4.14)

and the initial conditionsH0(x) = h0(x) = 1, H1(x) = h1(x|q) = 2x, it follows that

lim
q→1−

2n/2

(1− q)n/2hN(x
√
(1− q)/2 q) = HN(x). (4.15)

It is interesting to note that (4.12) exhibits the correct limiting behaviour asq → 1−, sinceb
in (4.12) has to be replaced byb

√
(1− q)/2. The result agrees with the first term in (1.11).
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We will determine the behaviour near the edge after we have derived the estimate (4.12)
using a different weight function. Askey [1] proved that theq−1-Hermite polynomials are
orthogonal with respect to the weight function

w(x) := (1+ x2)−1/2∏∞
n=0[1+ 2(2x2+ 1)qn + q2n]

. (4.16)

To apply the Coulomb fluid method to the weight function (4.16) first we note that it is
easy to obtain

−w
′(x)
w(x)

= x

1+ x2
+
∞∑
n=1

8x

q−n + 2(2x2+ 1)+ qn

= x

1+ x2
+
[ ∞∑
n=1

+
−∞∑
n=−1

]
4x

q−n + 2(2x2+ 1)+ qn

=
∞∑
−∞

x

x2+ c2
n

(4.17)

where

cn = [qn/2+ q−n/2]/2. (4.18)

Using equation (4.7) and proceeding as in the case of the weight function (4.1), we see that

σ(x) = 1

4π

√
b − x
b + x

∞∑
−∞

[
i(b − icn)

(x + icn)
√
b2+ c2

n

+ complex conjugate

]
(4.19)

and the side conditionN = ∫ b−b σ (x) dx becomes

4N =
∞∑
−∞

[
1−

√
−b + icn
b + icn

+ 1−
√
b + icn
−b + icn

]

= 2
∞∑
−∞

[
1− cn√

b2+ c2
n

]
. (4.20)

We again approximate the sums in (4.20) by integrals, and after calculations similar to those
used in deriving (4.11) we obtain

βN ≈
∫ ∞
−∞

[
1− coshu√

b2+ cosh2 u

]
du.

Therefore

βN ≈ lim
R→∞

[
u− sinh−1

(
sinhu√
1+ b2

)]R
−R

= 2 lim
R→∞

[
R − ln(2 sinhR)+ 1

2 ln(1+ b2)
] = ln(1+ b2).

This is the last equality in (4.11), and hence (4.12) follows.
We can use theq-integral to approximate the sum in (4.20). Recall [13] that∫ ∞

0
f (x) dqx =

∞∑
−∞

f (qn) (qn − qn+1). (4.21)
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Now equation (4.20) is

2(1−√q)N =
∞∑
−∞

qn/2− q(n+1)/2

qn/2

[
1− (qn/2+ q−n/2)/2√

b2+ (qn/2+ q−n/2)2/4

]

=
∫ ∞

0

[
1− (u+ u−1)/2√

b2+ (u+ u−1)2/4

]
dqu

u

≈
∫ ∞
−∞

[
1− coshv√

b2+ cosh2 v

]
dv.

This gives (4.11) withβ replaced by 2(1−√q). Therefore another estimate forb is

b ≈ (e2N(1−√q) − 1
)1/2

. (4.22)

Thus we succeeded in replacing (4.12) by (4.22), which is a smaller estimate (see the
discussion following (3.16)).

To determine the edge behaviour we go to (4.19) and find

G(b) =
√
b/2

π

∞∑
−∞

cn

(b2+ c2
n)

3/2

≈
√
b/2

π(1−√q)
∫ ∞
−∞

coshv dv

[b2+ cosh2 v]3/2

=
√

2b

π(1−√q)
∫ ∞

0

dw

[b2+ 1+ w2]3/2
.

Thus

G(b) ≈
√

2b

π(1−√q)
1

1+ b2
. (4.23)

Substituting forG(b) from (4.23) in (1.9) we obtain

a ≈ b −
(

3π(1−√q) (1+ b2)

2
√

2b

)2/3

. (4.24)

Therefore

a ≈
[
1− 1

2

(
3π(1−√q))2/3

] [
e2N(1−√q) − 1

]1/2
. (4.25)

The limit q → 1− of (4.24) is interesting. As was pointed out earlier, we need to change
variables as in (4.13), soa needs to be replaced bya

√
(1− q)/2. Thus equation (4.24)

becomes

a ≈
[

2(e2N(1−√q) − 1)

1− q
]1/2

− c4
e4N(1−√q)/3 (1−√q)2/3(

e2N(1−√q) − 1
)1/6 √

(1− q)/2
(4.26)

c4 ≈
(

3π

2
√

2

)2/3

. (4.27)

As q → 1− the right-hand side of (4.25) reduces to the correct limit as given by the
right-hand side of (1.11).
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Here againc4 contains our old friend(3π)2/3 which indicates that it may be replaced
by an algebraic multiple ofi1. We think it may be that

c4 = 6−1/3i1 (4.28)

although this will be very surprising, if it holds true. In the area of random matrix models
it is believed that there is a universal law governing the behaviour of the density at the tail
of the eigenvalue spectrum (point spectrum). Our work gives an interpretation of the tail
behaviour in terms of the largest zeros of orthogonal polynomials. We propose that this
universality principle broadly states that the constant in the second term of the asymptotic
development of the orthogonal polynomials is the first positive zero of the Airy function
multiplied by an algebraic number. Some assumptions on the recursion coefficients or the
analytic properties of the the weight functions are required. This universality principle is
probably true for orthogonal polynomials whose recurrence coefficients are monotone and
have algebraic growth. More precisely we believe the following to hold true.

Conjecture 2.Let pn(x) be symmetric orthogonal polynomials generated via

p0(x) := 1 pi(x) = x/a0 xpn(x) = anpn+1(x)+ an−1pn−1(x) (4.29)

where{an} is a monotonically increasing sequence and

an = c nγ (1+ o(1)) γ > 0. (4.30)

Then the largest zero ofpn(x) satisfies

xN,1 = 2c nγ
[
1+ ξi1nδ + o(nδ)

]
(4.31)

where 0> δ andξ is an algebraic number andi1 is the smallest positive zero of the Airy
function.

The numberδ in conjecture 2 depends onδ. The recurrence coefficients of theq−1-
Hermite polynomials are of exponential growth. If equation (4.28) is true, then theq−1-
Hermite polynomials will also obey this universal law, a very surprising fact indeed.

5. Bounds using chain sequences

In this section we use chain sequences to establish sharp upper bounds for the largest zeros
of the Wilson,q−1-Hermite andq-Laguerre polynomials. The method is based on explicitly
knowing the coefficients in the three-term recurrence relation satisfied by the polynomials.

Recall that a sequence{an : 0 < n < N} is a chain sequenceif there is a parameter
sequencegn, such that

an = gn(1− gn−1) 06 g0 < 1 0< gn < 1 0< n < N. (5.1)

For detailed information, see [10] and [15]. HereN may be finite or infinite. The sequence
{1/4} is a chain sequence withgn = 1/2, so is any non-negative sequence bounded above
by a chain sequence.

Theorem 5.1.Assume thatQn(z) is a sequence of monic orthogonal polynomials generated
by

Q0(x) = 1, Q1(x) = x − α0, Qn+1(x) = (x − αn)Qn(x)− βnQn−1(x) (5.2)

and let

B := max{xn : 0< n < N} A := min{yn : 0< n < N} (5.3)
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wherexn andyn, xn > yn, are the roots of

(x − αn)(x − αn−1)an = βn (5.4)

andan is any chain sequence. Then all the zeros ofQn(z) lie in (A,B).

This is [15, theorem 2] and is a restatement of the Wall–Wetzel theorem. A consequence
of theorem 5.1 is the following.

Theorem 5.2.If the zeros ofQN(x) are less (greater) thanA (B), then the sequence
{βn/(αn − A)(αn−1− A) : 0 < n < N} ({βn/(B − αn)(B − αn−1) : 0 < n < N}) is a
chain sequence.

In the case ofq−1-Hermite polynomialsαn = 0 andβn = q−n(1− qn)/4. LetXN,1(H)
andXN,1(qH) be the largest zero of Hermite andq−1-Hermite polynomials of degreeN ,
respectively. Withan = 1

4 in (5.4) we obtain the following bound forXN,1(qH):

XN,1(qH) < [q1−N(1− qN−1)]1/2 (5.5)

sinceq−n(1− qn)/4 increases withn.
The next theorem gives a more refined bound forXN,1(qH).

Theorem 5.3.We have

XN,1(qH) <

{√
2N + 1− 6−1/3i1

(2N + 1)1/6

} √
q1−N(1− qN−1)

2(N − 1)
(5.6)

wherei1 is the smallest positive zero of the Airy function.

Proof. For the Hermite polynomialsαn = 0 andβn = n/2, so by theorem 5.2 we can
choose

an = n

[2XN,1(H)+ ε]2
0< n < N (5.7)

for any ε > 0, which can be allowed to depend onN , in theorem 5.1. Sinceq−n(1− qn)/4
is strictly increases withn then the result follows from theorem 5.1 and the inequality

XN,1(H) <
√

2N + 1− 6−1/3i1

(2N + 1)1/6
(5.8)

of [29, theorem 6.32]. This completes the proof. �
It is easy to see that (5.6) is sharper than (5.5) for sufficiently largeN . As was mentioned

following (4.15), to obtain the correct limit asq → 1− we need to replaceXN,1(qH) by
XN,1(qH)

√
(1− q)/2. With this renormalization the bound in (5.6) tends to the bound (5.8)

of XN,1(H) asq → 1−.
We now treat theq-Laguerre polynomials{L(α)n (x; q)}, [25]. The correspondingαn’s

andβn’s are given by

αn = 1− qn
(1− q)q2n+α +

1− qn+α+1

(1− q)q2n+α+1
(5.9)

βn = (1− qn)(1− qn+α)
(1− q)2q4n+2α−1

. (5.10)

It is easy to see that the roots of (5.4) withan = 1
4 are monotone inn, thus theorem 5.1

shows that the zeros of theq-Laguerre polynomialL(α)N (z; q) are in (AN,BN) whereAN
andBN are the roots of

(x − αN−1)(x − αN−2) = 4βN−1 (5.11)
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and theα’s andβ ’s are given by (5.9) and (5.10). The main term inAN for sufficiently
largeN is

AN = q−2N+1−α

2(1− q)
[
(1+ q)(1+ q2)+

√
16q3+ (1+ q)2(1− q2)2

]
+O(q−N). (5.12)

Mathematica shows that the function

16x3+ (1+ x)2(1− x2)2

is monotonic for 06 x < 1. Thus the quantity in square brackets in (5.12) increases with
q and is bounded above by its value atq = 1, namely 8. ThusBN < 4q−2N+1−α/(1− q),
an estimate, which in the special caseα = 0 is sharper than (3.8).

6. Weak exponential weights

In this section we study the largest zero for polynomials orthogonal with respect to weak
exponential weights (1.17). Note that the Stieljes–Wigert polynomials [10] are special
q-Laguerre polynomials and are orthogonal with respect to a weak exponential weight
function with m = 2. Thus we expect the limiting behaviour of the largest zeros of
the polynomials orthogonal with respect towm(x) to resemble the largest zeros of theq-
Laguerre polynomials, for example they should increase exponentially. It turned out that
the qualitative behaviour of the correction terms depends onm and that the casem = 2 is
an exceptional case.

As before, it is convenient to use the parametrization

q = e−β 0< β <∞. (6.1)

The normalization condition for the density is

N = 1

2π

∫ b

0

√
y

b − y u
′(y) dy. (6.2)

Using the fact that

u′(x) = 1

βm−1

(ln x)m−1

x

we obtain

N = 1

2πβm−1

∫ 1

0

(ln b + ln t)m−1

√
t (1− t) dt. (6.3)

The integrand can be expanded by the binomial theorem andN is now expressed as a
polynomial in lnb of degreem− 1. Thus we at arrive at the asymptotic expansion

N = 1

2βm−1

[
(ln b)m−1− 2(m− 1) ln 2(ln b)m−2+O((ln b)m−3)

]
(6.4)

asb→∞. Solving forb in terms ofN , we find

b ∼ exp
[
(2N)1/(m−1)β

] = q−(2N)1/(m−1)
. (6.5)

This indicates that the zeros are well separated, as is the case with the zeros of theq-Laguerre
polynomials [25].

We now proceed to determine the further refinement to the first crude estimate given
by (6.5). To accomplish this the behaviour ofσ(x) for x → b− is required. However, for
m > 2, it appears that no explicit formula forσ(x) is available. Therefore we shall only
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give an asymptotic formula for the quantityG(b), introduced in the previous sections. The
density is

σm(x) = 1

2π2βm−1

√
b − x
x

P

∫ b

0

(ln y)m−1

√
y(b − y)

dy

y − x . (6.6)

We usedσm(x) to exhibit the dependence onm. To compute the above principle value
integral we use a generating function technique. It is clear that

∞∑
m=1

σm(x)
βm−1wm−1

(m− 1)!
= 1

2π2

√
b − x
x

P

∫ b

0

exp(w ln y)√
y(b − y)

dy

y − x

= 1

2π2

√
b − x
x

P

∫ b

0

yw−1/2

√
(b − y)

dy

y − x . (6.7)

Therefore [14, equation (2.228.3)] yields
∞∑
m=1

σm(x)
βm−1wm−1

(m− 1)!
= −b

w−1

2π2

√
b − x
x

B(− 1
2, w + 1

2)2F1(1− w, 1; 3
2; 1− x/b). (6.8)

In the limit x → b−, we find

σm(x) ∼ Gm(b)
√
b − x x → b−. (6.9)

In this case theG’s have the generating function
∞∑
m=0

Gm+1(b)
βmwm

m!
= −b

w−3/2

2π2

0(− 1
2)0(w + 1

2)

0(w + 1)

= w

(bπ)3/2
exp(w(ln b))

0(w + 1
2)

0(w + 1)
. (6.10)

Since both0(w + 1
2) and0(w + 1) are analytic functions ofw in the neighbourhood of

w = 0 [12], then (6.10) shows thatG1(b) = 0 andGm(b) is a polynomial in lnb of degree
m− 2, for m > 1. Indeed we have

Gm+2

(m+ 1)!
βm+1 = 1

π b3/2

(ln b)m

m!
+ lower-order terms. (6.11)

This gives the following asymptotics for the largest zeros of polynomials orthogonal with
respect to weak exponential weights:

a ∼ b − c1 b

[
βm−1

2(m− 1) (ln b)m−2

]2/3

as b→∞ (6.12)

where

c1 ≈ (3π)2/3. (6.13)

Here again it is likely thatc1 = 2(6−1/3)i1.
Observe that form = 2, the correction term in (6.12) is of the same order as the first

term, the same was noted in the case of theq-Laguerre and theq−1-Hermite polynomials.
This is not surprising since the largest zero asN →∞ is controlled by the large-x behaviour
of the potentialu(x).

We indicate here that in order to obtain the lower-order terms in the expansion (6.11)
it is useful to make use of the duplication formula of the Gamma function to write the
right-hand side of (6.10) as

w

πb3/2
exp(w ln( 1

4b))
0(2w + 1)

02(w + 1)
. (6.14)
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Equation (1.17.2) in [12] is

log(0(1+ z)) = −γ z+
∞∑
n=2

(−1)n ζ(n) zn

n
(6.15)

which implies

log

(
0(1+ 2w)

02(1+ w)
)
= 2

∞∑
n=2

(−1)n (2n−1− 1)

n
ζ(n)wn. (6.16)

Thus one can obtain a few of the lower-order terms in (6.12), if needed.
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