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Asymptotics of the largest zeros of some orthogonal
polynomials*

Yang Chen and Moura E H Ismail;
Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK

Received 27 August 1997

Abstract. We study the asymptotics of the largest zeros of the Wilgort-Hermite andg-
Laguerre polynomials using two distinct techniques. The first is based on the Coulomb fluid
technique developed in a previous paper where the primary input is the weight function, while
the second uses the method of chain sequences which supplies inequalities for the largest zeros;
using the recurrence coefficients. We also investigate the asymptotics of the largest zeros of the
polynomials orthogonal to the weight functions exp[(logx)"] for ¢ > 0 andm a positive

even integer.

1. Introduction

The theory of random matrices which originally arose from statistical modelling of the
energy levels of heavy nuclei, has recently seen application in other diverse areas of physics
such as quantum chaos [2], transport in disordered disordered solids [8] and low-dimensional
string theory [3]. In pure mathematics, the Gaussian unitary ensemble, a special case of
Hermitean random matrices, is important in the study of the zeros of the Riemann zeta-
function [26].

In the theory of random matrices a central object of interest, denotdd .Ak is the
probability that an interval/ (a subset oR) is free of eigenvalues. For complex Hermitean
matrices, this quantity can be expressed as the Fredholm determinant of a certain integral
operator over the interval [23]:

E[J] = detI — K;)
whereK has the kernel

N—-1
K(x,y) = Vw@w) Y pix)p;(y).
j=0

Here {p;(x) : 0 < j < N} is the family of polynomials orthonormal with respect to the
weight functionw(x):

/ wx) py () pr(x) dr = 8

* Research partially supported by NSF grant DMS 9625459 and a visiting fellowship from the Leverhulme
Foundation.

1 E-mail: y.chen@ic.ac.uk

i Permanent address: Department of Mathematics, University of South Florida, Tampa, FL 33620-5700, USA.
E-mail: ismail@hahn.math.usf.edu

0305-4470/98/255525+20$19.5@¢) 1998 IOP Publishing Ltd 5525



5526 Yang Chen ath M E H Ismail

where the integral is over the support®fx), andw(x) is related to the potential(x),
of the random matrix problem in the eigenvalue representation, through the relationship,
wx) = exp[—u(x)].

For J = (s, 00), E[s, o] gives the probability distribution of the largest eigenvalue,
s, under an appropriate scaling. With this in mind we are led to the ongoing program of
establishing the ‘edge’ asymptotic behaviour of a large class of orthogonal polynomials. In
order to compute such asymptotics, rather precise knowledge is required on the largest zeros
of the associated orthogonal polynomials. This will be explained later. We shatl se
to meany is an approximation ta while f(x) ~ g(x) asx — a to meanf(x)/g(x) — 1
asx — a.

It is known from the important work of Ullman, Saff, Mhaskar, Rakhmanov, Lubinsky,
Totik, Van Assche, Levin and others that the distribution function of the zeros denotes as
o (x) can be obtained from the following minimization problem:

min Flo] subject to /o(x) dx =N (1.2)
e J

where
Flo] :/u(x) o(x)dx—//a(x)ln [x — ylo(y) dy dx. (1.2)
J JJI

Here expFu(x)] = w(x) is the weight function andvV is the degree of polynomials
orthonormal with respect to weighi(x):

/ P (X) P () W) dr = Sy (1.3)
K

where K is the interval of orthogonality. In this paper we shall focus our attention on
cases for whichK is the real line and positive real line. Note that), the zero counting
function, is positive over its suppott. The minimizing functiono satisfies a singular
integral equation

W (x) = P/ W) gy (1.4)
er X = y
where the intervall is (ez, eg). In the examples to be given belowis either (0, b) or

(—b, b) and P denotes the principal value. The edge paramétés determined by the
normalization conditionfj o(x)dx = N. The solution of the integral equation reads

1 — er o,/ _
olx) =— R XP/ " (y) Y dy x € (er, er). (15)
22N x—e, Jo, y—x\er—y

The functiono (x) given by (1.5) is indeed the potential theoretic approximation of

N-1
on(x) = w(x) Y [pa(0)]?
n=0
expected to be valid for sufficiently largé. This technique was developed by Dyson [11]
on certain random matrix ensembles in the 1960s and has recently found application in
other matrix ensembles [4-8].
As an example take:(x) = x2 and K = (—o0,00). In this case the orthogonal
polynomials are the well known Hermite polynomials. A simple calculation using (1.5)
with J = (—b, b) gives

o(x) = % b2 — x2 x € (=b, b) (1.6)
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with b = /2N from the normalization condition. Sinee(xb) = 0 in (1.6), the parameter

b defines the edges beyond which the density vanishes. To a crude approxitnaéon

be identified as the largest zero. Our contribution to this method is the observation that a
further refinement to the largest zero can be obtained from the formula

b
1=/ o(x) dx a.7)

in the limitsb — oo anda — b. Thea in (1.7) is a better approximation to the largest
zero tharb is. Thus equation (1.7) supplies the asymptotics of the largest zero. To see how
this works, we first determine the behaviourcofx) nearx = b. This is

o(x) ~GMb)Vb—x asx — b~ (1.8)
where in the Hermite case
V2b
G(b) = —

We will show in the case of other sequences of polynomials, to be studied later, that the
density has the above ‘edge’ behaviour.
A simple integration using (1.8) gives

3 2/3

We remark that sinc& (b) > 0 the crude estimatg for the largest zero is larger than the
refinement given in (1.9).
In the Hermite example, we find the following approximation to the largest zero:

2/3

a~~2N —c,N~Y6 c1 ~ (3r/2'%) (1.10)

Observe that the first term agrees exactly with the result in &§2%j, while the numerical
value of the constant;, 1.98752..., comes close to that obtained using the Sturm
comparison theorem based on the differential equation satisfied by the Hermite polynomials,
1.63329... . From this example it is apparent that the Coulomb fluid method does not give
the correct constant in the second term in the asymptotic expansion of the extreme zeros of
orthogonal polynomials. The correct value faris 6-1/3i,/2%6, wherei, is the positive
smallest zero of the Airy function.

The ‘edge’ or uniform asymptotics of the Hermite polynomials is obtained in the limits,
N — 00, x — +/2N and such thatv/®(,/2N — x) remains bounded. Specifically we let

x=+2N —ct N7Y8.
From differential equation techniques [29, equation (8.22.13)] it is known that
efx2/2 v (x) = 313 7.[73/42(2N+1)/4mN71/2 [Ai (1) + O(N’Z/?’)]

holds withe = 2-1/23-1/3, Here the limit denotes the double limits indicated above. Indeed
we recognize that when the density behaves as in (1.8)}asb—, the appropriate parameter
is

t:=c[G¥?b — x). (1.11)

Based on the above observation, we conjecture that the following universal formula holds
for the edge asymptotics for a class of orthogonal polynomials.
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Conjecture 1.f, asx — b~ the densityo satisfies

o(x) ~ G(b)vb —x (1.12)
then
Vw(@)py(x) ~ dyAi(r) (1.13)

wherer is defined by (1.11) andy is a constant depending only avi and Ai(¢) is the
Airy function.

The above class of orthogonal polynomials, namely the class for which (1.12) holds,
contains at least the Freud weights
w(x) = exp(—|x|*%) a>0 (1.149)

and orthogonal polynomials whose weight function is of the formP®, where
log Q(x)/log|x| has limits astx — +o0.

There is also a class of orthogonal polynomials which arises from the double scaling
limit in certain problems in the theory of two-dimensional quantum gravity [3], whose
density functiong (x), has the following edge behaviour:

o (x) ~ Ay bY?27F (b — x)tY2 x~b k=0,1,2,....
Here A, is a positive constant depending @nand b = By+/N, is positive. Using the
procedure described above (see also [5, 4]) we find that the largest zero in this case is
an~ b _ Ck b(2k71)/(2k+3)

whereC; has the approximate value
2% +3 2/(2k+3)
Cy =~ .

k ( 2A )

By introducing a scaling variable which generalizes the previpuse expect the asymptotic
relation

Vwx)py(x) ~ Dy W(s) (1.15)
with
§ = Ai/(2k+3) b(l—2k)/(2k+3)(b —x)

to hold, where¥ (s) is a solution of the following differential equation;

d2
(— + q(S))y(S) =0

ds2
and the potentiag (s) having the large- behaviour
q(s) ~ sZ*1 4 O(s%) as s — oo. (1.16)

In this paper we employ the Coulomb fluid approximation to determine the rge-
behaviour of the largest zeros of the Wilson polynomials [3il,aguerre polynomials [25,
13] andg~*-Hermite polynomials [1, 16]. The Wilson polynomials are treated in section 2
and the limiting behaviour of their zeros resembles that of the Laguerre polynomials
(Szed [29]). The zeros of the-Laguerre polynomials are well separated, i.e. the ratio
of two consecutive zeros is at leag{25], and this is reflected in the asymptotic formula
of their largest zeros which is derived in section 3. Our asymptotic result even exhibits the
correct limiting behaviour ag — 1~. In section 4 the large-degree behaviour of the largest
zeros of theg~1-Hermite polynomials is analysed and again has the correct behaviour as
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g — 1. In section 5 we use chain sequences [10, 15] to give sharp upper bounds for the
largest zeros of-Laguerre and;—X-Hermite polynomials.

Section 6 contains large-degree asymptotics of the largest zeros of the polynomials
orthogonal with respect the weight functions

—(Inx)™
Wy (x) == exp[m}

wherem is an even positive integeq, € (0, 1) andx € (0, o). The asymptotics are carried

out using the Coulomb fluid method. Lubinsky and Sharif [21] have already determined
the first term in this asymptotic expansion. Our determination of the second term gave the
surprising result that the cage= 2 is very different from the rest of the cases> 0, but

m # 2.

We shall call these weights ‘the weak exponential weights’, for lack of a better name.
Such a class of weight function fat = 2 arises from the study of electronic transport in
disordered solids [8].

The Coulomb fluid method is not mathematically rigorous but seems to be very powerful
and accurate. It may be appropriate here to quote Dyson’s description of the Coulomb fluid
method [11, page 158]:

These assumptions. can be summarized in the single statement that for |Arge
the Coulomb gas obeys the laws of classical thermodynamics. The assumption
means that the free energy density at any point being a function of the local density
and temperature alone. To a physicist these assumptions are so hallowed by custom
that they hardly require justification .

A birth and death process gives rise to a sequence of orthogonal polyndifijjals}
generated by

Mn+lE1+1(x) = [)\-n + Un — )C] Fo(x) — A1 Fmq1(x) (118)

(1.17)

with
Fo(x) := 1, F1(x) = [Ao + po — x]/2o0. (1.19)
Orthogonal polynomials that arise from birth and death processes have their z&¥psdn

In [7] we reformulated a powerful theorem of Medt al [22] and established the following
theorem.

Theorem 1.1Let {F,} be a family of birth and death process polynomials satisfying (1.18)
and (1.19) and assume

A = a?n®[1 + o(n=?3)] (1.20)
and

pn = a®n?[1 + o(n=%3)] (1.22)
asn — oo and assumé > 0. Let the zeros of;, be arranged as

Xp1>Xp2>> X, >0 (1.22)

and assumeiy = 0. Furthermore, assume thf}}3° are the positive zeros of the Airy
function arranged in increasing order. Then we have

VXok = 2an’ [1— 367237325 1 o(n=%%)] (1.23)
or equivalently
1 )‘-n n —1/@)
Xk = V2 0o i) [1 - 567 3-”%(%) + o(n‘z/“")] (1.24)

This theorem is relevant to our treatment of the zeros of the Wilson polynomials in section 2.
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2. Wilson polynomials

The Wilson polynomials are orthogonal with respect to the weight function

[T, T(@ +iyDT (@ — i)
[(2iy/x)T(—2iy/x)

For the Wilson Weight function we find

o4
W) = =228 = [V @IVE) — P (2]~ = Y U@ + VD) — @ — V)
w X =i

w(x, ai, dz, as, as) = x €[0,00) a; €R. (2.1)

2|
%I

B D @2
N = x + (aj +n)? < x +n2/4 '
wherey (+) is the di-Gamma function which has the representation

> 1 1
Y — Y () =Z[n+y - nﬂ]

n=0

The solution to the integral equation (1.4) is

1 1
o(x) = / — b ) . ( ¥ @yt y+n2/4>. (2.3)

An integration using
d 1 1
4 4 = T for c>0
—xVb—y y4+c b+cx+c

gives the following representation fer:

o) = & /b Z|: aj+n n/2 1 i|
x+ (a, +m2 o+ (@ +n)2 /bt n2jd x+n2/h

(2.4)

for x € (0, b). Approximating the sum in (2.4) by an integral, we find, using Mathematica,
thato (x) is approximately

1 1.4 | [Z(b—x)—f-Z b+a].2+x+aj:| In|:2b+2m]>
. .

U(X)"“—<—Zn x—i—ajz

27 /x \ 2
(2.5)
The normalization condition in (1.1) becomes

v=[loma=3[5 3 ﬁ)ﬂ%ﬂ
P N e I A Gt
%[ (Jora—a)- zf} (2.6)

™M=

\ |
iR

J
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In other wordsN andb are related through the algebraic equation

1.4 4
2<N+§;dj> Z;,/bﬁ-(ljz—Z\/Z.

This gives the following asymptotic form of the dependencé oh N, and for sufficiently
largeb and N we find

1 )2
b= (N +5 Za,-) + O(1/N). (2.7)
j=1

We obtainG (b) for the largest zero, by expanding the density near

1 4 1 2 1
Gb) = —— )~ = 2.8
®) 271«/5(121 b+a? \/5) b (2.8)

Thus the largest zero of the Wilson polynomials obeys the asymptotic approximation
4 2 14 4/3
an~ <N+Zaj) —cz(N+§Zaj> (2.9)
j=1 j=1
and
c2 ~ (31/2)%3, (2.10)
As we saw in (1.11), the Coulomb fluid approximation for the Hermite polynomials gave
c1= (37 /27/4)2/3
while the correct value is
c1 =i, 67132716 (2.11)

andi; is the positive smallest zero of the Airy function. This suggests that the Coulomb
fluid approximation reads6/3i; as (37)%3/2. With this analogy it is plausible that

co = 37 Y3, (2.12)
This would lead to
4 2 1 4 4/3
— I - T VK] = ) 4/3
a= (N+;a,> 3 11<N+ Z;a,) + o(N*3). (2.13)

The Wilson polynomials [31] come from a birth and death process with
_(@ata+n)(a+az+n)(ar+as+n)(s+n—1)

An 2.14

(s+2n—1D(s+2n) ( )

= n(az + az +n)(az + as +n)(az + as + n) (2.15)

s+2n—D(Gs+2n—-2)
for n > 0, whereas, ay, as, as are positive parameters and

4

s = Zaj. (2.16)
j=1

Thusa = %, § = 1 in (1.20) and (1.21), and fok, «(W), the zeros of the Wilson

polynomials, we obtain
X (W) = (n +5)% — 373 + 5)73i; + o(n™?3). (2.17)
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In [7] we conjectured that
VXikW) = (1 +5) = 3320 + 973 {ix + &) (2.18)

whereg, is positive for alln, n > 0 and¢, — 0 asn — oo. Of course, our asymptotic
result (2.16) shows that, — 0 asn — oo.

3. g-Laguerre polynomials

The g-Laguerre polynomials were introduced by Hahn and their Hamburger moment
problem was investigated by Moak [25] and completed by Ismail and Rahman in [17].
They are orthogonal with respect to the weight function

1

w(x) = m x € (0, 00) (31)

where 0< ¢ < 1 and theg-shifted factorials are
(a;q)o =1 (@ @) =[]A—ag"™ n=12.. orco (3.2)

(see [13]). Note that this is related to an indeterminate moment problem for which the four
entire functions that gives the Nevanlinna parametrization of the measures of orthogonality
have been found recently, [25, 17]. We shall determine the largest zero gfltaguerre
polynomials using the technique mentioned in section 1. gt&guerre polynomials are

also of interest in certain physical applications [9].

First we find
W) o
"(x 3.3
)= S w(x) X::O +ay (3:3)
where
1
ay '= ———. 3.4
1 —q)q" (34)
We also use the parametrization
g=¢" with 0 < 8 < oc. (3.5)

The functiono (x) now reads

1 [b—x X a, 1
= — 0 b. 3.6
o(x) o E ; /a,,+ban+x <x< (3.6)

The functionG (b) is

Go) = Z (an + b)3/2

N 1 o du
21BNb Jija-q) Nu(u + b)3?

——1 Iim[ R — 1 }
T 7Bb32 R>o|V b+ R 1+A—q)b |
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In the above computation we have replaced the sum oJ®r an integral. Thus

1 / 1

We now determiné as a function ofN. From the normalization condition in (1.1) we
obtain the following from (3.6):

N—/b ()dx—lil &
=), T TS an+ b

n=0

~ L °°d_”<1_ /#)
26 J1 u u+A—q)b
R
= lim |[In +2In(1+ 1+ 1 - b:|
R*oo[ (WR+VR¥T=q)b)? ( =aon

B 1|n<l+«/l+(l—q)b_>
=3 5 .

Thus

4 —2N _ ,—N
pa—a ) (3.8)
1-gq
Note that we recover the edge parameter for the Laguerre polynomials in the lmifl~.
Indeed we have

lim b= 4N. (3.9)

Equations (1.9) and (3.7) give

2/3 1 e
a~b—(3n8/2) (1 m) b. (3.10)
Observe that in this case the correction term is of the same order as the main term.
This seems to be the typical behaviour when the zeros have exponential growth or
when the weight function behaves like éx@|logx|*), for ¢ > 0 anda > 0. One
possible explanation is that the Coulomb fluid method giv¥eas function of N, say
b ~ Cexp(f(N)). The next approximation (1.7) basically changgsto N + h(N),
say wheres(N) = o(N). This may have the effect of only changing the multiplicative
constantC. For example withf (N) = N, g(N) = ¢, a constant, the effect of the second
approximation will be to replac€ by Ce'.

We now use a different approximation of the sum in the equation following (3.7). We
utilize theg-integral [13]

/0 fx) dyx = Z f(agq") (aq" — aq"*"). (3.11)
n=0

The g-integral is just an infinite Riemann sum using the evaluation pding8 : 0 < n <
oo}. We go back to the equation defining and proceed as follows:

) IO 3 [ Epe— —
) 24 VIFbd—q9)q"
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1 < 14" 1—9q)
= 1—1A+bL—q)qg") ) —=
210 =0[ 1+b1~q)g") ]

n
n

d,u

1 1
= — | [1-Q+bA-qu) Y]
2(1—61)/0 [1-a+ba=gou=]

Now takingqg to be near 1, we approximate thantegral by a Lebesgue integral and obtain

(3.12)

1
N%/ [1—(1+b(1—q)u)—1/2]d—”
0 u

1 VIHIT=9)  dy

“1-4 1+v
Therefore
1+ 1A +5b01—q)?
N%In[ +(+2( 4)) ] (3.13)
This results in the following approximation to
-9 _ 1
b~ 4V~ e’ . (3.14)
1-¢
The quantityG (b) can also be evaluated in the same approximation:
! d,u
G(b) = 1
O =20 ) Trba—qu?
and we obtain
Gbh)~ ————[1— A+ bl —q)V?]. 3.15
() nb3/2(1—q)[ (1+b1—q)) 7] ( )

Note that this is same as that obtained previously by approximating the sum as an integral
provided we identifyg with 1 — ¢ for ¢ is close to 1.
Thus for sufficiently largeb andgq close to 1, we have

- 3r(1-q) 23
‘T [2<1 — @+ b q>>1/2>]
with b given by (3.8) or (3.14).

We remark here that the edge paramebembtained by the first method is larger than
that obtained using the second method, both of which compare favourably with the chain
sequence estimate to be presented in section 5. This is so diflc®@ @12 — 1) <
g~ 2N — g~V if and only if eV — g~ V)@ 19 4 ¢~V — 1) < 0, which is equivalent
to V@9 < g~V namelyq €79 < 1. The last inequality is + e < g and obviously
holds for all 8 > 0.

Here again the magic constaf@r)?? appears and the correct value may be that we
replace(37)%2 by 2(6-%3)i; but further numerical evidence is needed.

(3.16)

4. g~*-Hermite polynomials

Ismail and Masson [16] proved that the!-Hermite polynomials are orthogonal with respect

to the weight function

€2 sinn, coshna(q, —q€™, —qe 21 @)oo (€4 2; @) oo |
(&, —e178 —g €1, get ] g) oo |?

w(x; n) = (4.1)
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where
x = sinh& n=mn1+in2 n1€(—00,00) 0<ny<m/2 (4.2)

This is an interesting example because the weight function depends on the two parameters
n1 andnz, while the orthogonal polynomials, and hence their zeros, are independent of these
parameters.

In this case

1 [b—x b —w'(yin) y+b
"(x)‘ﬁVHbP/_hw(y;n)(y—x) b=y (4-3)

As in the case ofj-Laguerre polynomials we set

g=¢’ (4.4)
and apply
(€T, —e75: g = 1_[ [1 —2¢"e'x — q2”e2"]
n=0
(€7, g€ @)oo = [ [ [1+ 29" 17k — g*2e72]
n=0
to find from (4.1) that, for reak, we have
wn o 1 1 _
wx;n) ;)[x —sinh(nB8 — n) + x +sinh((n + 1) + 77)] +=m

- ;[x — sinh(nf — n) Tt sinh(np — ﬁ)] (4.5)

From (4.3) and (4.5) it is easy to obtain

1 h—x & boy+b 1 _1 dy
70 = 52 erb_Xoo:P/b,/bZ—yZ[y—Sinh(nﬂ—n)+n_)n}y—x' (4.6)

If Im a # 0 then
P/” 1 y+b dy a—i—b} dy

b
1
=P/ [1+
by —a,p?2—y2y—x —b \/b% — y? y—aly—x

b
=(a+b)P[ ! dy
b (y —a)y/b? —y2y —x

a+bP/b[ 11 } dy
x—a Jyly—-x OG-a)] /b2-y2

_a+b fb dy
Xx—a Jop(a—y)Jb?—y?

T a+b

x—aVa—"»>b
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Thus we have proved

b
1
P/ y+b dy _ 7 a—l—b‘ @.7)
py—ab2—y2y—x x—aVa-—b
Therefore
1 [b—x &J |b+sinhn8 —n) 1 _
=—./— . 4.8
o) 2nV x+b ;[\/Sinl‘(nﬂ—n)—b x—Sinh(n,B—n)+n_>’7 (4.8)

We similarly evaluateffbo(x) dx and the result is

Al [ forsme—n]
N—/bG(x)dX—EZ[l—\/W]‘FU—)U. (4.9)

—00

We now approximate the sums in (4.9) by integrals, i.e. we apply

) b + sinh(nB — n) b+ sinh(u — n)
_20.;[1_ \/smh(nﬂ —) - ] B / [ \ sinh(u — i) — ] e
oo b + sinhu
-3 /OO mz[ [ ] du  (4.10)

wherern; is as in (4.2). We also have another sum as in (4.10)ybstreplaced by, hence
the resulting integral hag, replaced by—n,. After a change of variable — —u we can
combine the two approximating integrals and establish

BN /°°'”2 |:1 sinhu ] q
R ——————— | du
—oo—ing Vsintfu — b2

lim |:u —cosh‘1< coshu )T "
R—o0 /1 + b2 —Reinp

In(1+ ). (4.11)

This shows that
b~ /g N —1. (4.12)

Observe that the estimate (4.12) is independeng;0énd 7, as it should be. From the
three-term recurrence relations of the!-Hermite polynomialg#, (x|q)} in [1] or [16]

2xhy (x|q) = hota(xlq) +q7" (L= g")h,-1(x1q) (4.13)
the recurrence relation of the Hermite polynomigig, (x)} in [29], for example
2xH,(x) = Hy1(x) + 2n H,_1(x) (414)
and the initial conditionsHo(x) = ho(x) =1, Hi(x) = hi(x|q) = 2x, it follows that
2"/
qanQ d—qr /thv(x\/ 1-¢9)/2q) = Hy(x). (4.15)

It is interesting to note that (4.12) exhibits the correct limiting behavioyr as 1™, sinceb
in (4.12) has to be replaced by/(1 — ¢)/2. The result agrees with the first term in (1.11).
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We will determine the behaviour near the edge after we have derived the estimate (4.12)
using a different weight function. Askey [1] proved that the'-Hermite polynomials are
orthogonal with respect to the weight function

(L+x?)"Y2
TTo26[1 + 2(2x2 + 1)g™ + g2']°
To apply the Coulomb fluid method to the weight function (4.16) first we note that it is
easy to obtain

(4.16)

w(x) =

_w) i
wx) 1+ x2 =g+ 2(2x2 +1) +q"

EAA 4Ax
+
1+x2 I:Z Z]q—n+2(2x2+1)+qn

n=1 n=-—1
> X
= ZO; m (4.17)
where
e =[q"?+q"%/2 (4.18)

Using equation (4.7) and proceeding as in the case of the weight function (4.1), we see that

i(b—ic,) .
+ complex conjugat 4.19
o) = 471Vb+x Z|:(x+lcn)\/m P ugatp (4.19)

and the side conditiotV = ffbo(x) dx becomes
s —b +ic, b +ic,
4N=Z[l— LT ek AR }
~ b+ic, —b +ic,

=2
Z[ Vb2 + cZ:|
We again approximate the sums in (4.20) by integrals, and after calculations similar to those
used in deriving (4.11) we obtain

(4.20)

N /"O [l coshu } q
~ ——————— | du.
—oc0 Vb2 + costfu

Therefore

BN ~ lim |:u —sinhl( sinhu )T
R—o00 1+ b2 R
=2 lim [R —In@sinhR) + 3In(1+5%)] = In(1 + b%).

This is the last equality in (4.11), and hence (4.12) follows.
We can use thg-integral to approximate the sum in (4.20). Recall [13] that

| e =Y rana-gh. (4.21)
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Now equation (4.20) is

- <n+l>/2[1 @"2 +q72)/2 ]

X n/2
q q
2(1— Jg)N = -
«/_ ZO.; 6]"/2 \/b2+ (qn/2+q7n/2)2/4

_ w+ut/2 dq_u

= 1-—
/o [ \/b2+(u+u1)2/4] u

~ f [1 B coshv ] do.
— Vb2 + cosltv
This gives (4.11) withg replaced by 21 — ,/g). Therefore another estimate fbris
b~ (NVD )2 (4.22)

Thus we succeeded in replacing (4.12) by (4.22), which is a smaller estimate (see the
discussion following (3.16)).

To determine the edge behaviour we go to (4.19) and find
Vb2 & Cn

G(b) = (b2 + c2)32

b2 & coshv dv
71— /q) J_o [b? + costf v]3/2

. V2b /O" dw
(- ) Jo [P2+ 1+ w232

Thus
~/2b 1
G ~ . 4.23
®) 71— Jq) 1+b2 (4.23)
Substituting forG (b) from (4.23) in (1.9) we obtain
31— /7 (1+b2)>2/3
~b— . 4.24
L v (2
Therefore
1/2
a~[1-3@Era-yo)”| [V -1 " (4.25)

The limit ¢ — 1~ of (4.24) is interesting. As was pointed out earlier, we need to change
variables as in (4.13), se needs to be replaced /(1 — ¢)/2. Thus equation (4.24)
becomes

N(1—v) _ 1/2 NA-9)/3 (1 _ 2/3
a ~ [M} —C4 e4 ! 5-:/[6 ﬂ) (426)
l-gq (eZN(lfﬁ) — 1) JA=q9)]2
3 2/3
4~ <2—j§) . (4.27)

As ¢ — 1~ the right-hand side of (4.25) reduces to the correct limit as given by the
right-hand side of (1.11).
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Here againc, contains our old friend37)%2 which indicates that it may be replaced
by an algebraic multiple of;. We think it may be that

ca =673, (4.28)

although this will be very surprising, if it holds true. In the area of random matrix models

it is believed that there is a universal law governing the behaviour of the density at the tail
of the eigenvalue spectrum (point spectrum). Our work gives an interpretation of the tail
behaviour in terms of the largest zeros of orthogonal polynomials. We propose that this
universality principle broadly states that the constant in the second term of the asymptotic
development of the orthogonal polynomials is the first positive zero of the Airy function
multiplied by an algebraic number. Some assumptions on the recursion coefficients or the
analytic properties of the the weight functions are required. This universality principle is
probably true for orthogonal polynomials whose recurrence coefficients are monotone and
have algebraic growth. More precisely we believe the following to hold true.

Conjecture 2.Let p,(x) be symmetric orthogonal polynomials generated via

po(x) =1 pi(x) = x/ao xpn(X) = Gy ppy1(x) + ap_1pp—1(x) (4.29)
where{a,} is a monotonically increasing sequence and

a, = cn’ (14 0(1)) y > 0. (4.30)
Then the largest zero qf, (x) satisfies

xya1=2cn’ [1+&in’ +0(n’)] (4.31)

where 0> § and¢ is an algebraic number and is the smallest positive zero of the Airy
function.

The numbers in conjecture 2 depends ah The recurrence coefficients of the*-
Hermite polynomials are of exponential growth. If equation (4.28) is true, them the
Hermite polynomials will also obey this universal law, a very surprising fact indeed.

5. Bounds using chain sequences

In this section we use chain sequences to establish sharp upper bounds for the largest zeros
of the Wilson,qg~*-Hermite andy-Laguerre polynomials. The method is based on explicitly
knowing the coefficients in the three-term recurrence relation satisfied by the polynomials.

Recall that a sequende,, : 0 < n < N} is achain sequencéf there is a parameter
sequence,, such that

a, = g,(1—g,1) 0<go<1l 0<g,<1 O<n<N. (5.1)

For detailed information, see [10] and [15]. Hevemay be finite or infinite. The sequence
{1/4} is a chain sequence wit}), = 1/2, so is any non-negative sequence bounded above
by a chain sequence.

Theorem 5.1 Assume thaiD, (z) is a sequence of monic orthogonal polynomials generated
by
Oo(x) =1 O1x) =x—ao, Qu+1(x) = (x — ) Qu(x) — B Qn-1(x) (5.2)
and let
B:=max{x, :0<n < N} A:=min{y, :0<n < N} (5.3)
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wherex, andy,, x, > y,, are the roots of
(x —a,)(x —ap_1)a, = By (54)
anda, is any chain sequence. Then all the zerog®gfz) lie in (A, B).

This is [15, theorem 2] and is a restatement of the Wall-Wetzel theorem. A consequence
of theorem 5.1 is the following.

Theorem 5.2If the zeros of Qn(x) are less (greater) thad (B), then the sequence
{ﬂn/((xn _A)(an—l_A) 0 <n < N} ({ﬂn/(B _an)(B _an—l) :0<n < N}) is a
chain sequence.

In the case of;~-Hermite polynomialsy, = 0 andg, = ¢ "(1—q")/4. Let Xy 1(H)
and Xy 1(¢H) be the largest zero of Hermite agd*-Hermite polynomials of degre#,
respectively. Witha, = %1 in (5.4) we obtain the following bound faX v 1(q H):

Xya(gH) < [g7 N (@1 — gV H]Y? (5.5)

sinceqg ™" (1 — ¢")/4 increases with.
The next theorem gives a more refined boundXari(¢g H).

Theorem 5.3We have

6-1/3; giN@L—gN-Y
XnalgH) < {¢2N+1— (2N+1)1/6} Vv oD (5.6)

wherei; is the smallest positive zero of the Airy function.

Proof. For the Hermite polynomials, = 0 andg, = n/2, so by theorem 5.2 we can
choose

. n

C [RXya(H) +€]?

for anye > 0, which can be allowed to depend oh in theorem 5.1. Since ™" (1—¢")/4
is strictly increases witlx then the result follows from theorem 5.1 and the inequality

O<n<N (5.7

an

6_1/3i1
Xnvi1(H V2N +1— ——— 5.8
Nva(H) < + (2N + 1)1/6 (5.8)
of [29, theorem 6.32]. This completes the proof. |

Itis easy to see that (5.6) is sharper than (5.5) for sufficiently I1Argés was mentioned
following (4.15), to obtain the correct limit ag — 1~ we need to replac& y 1(q¢ H) by
Xna(gH)/ (1 — q)/2. With this renormalization the bound in (5.6) tends to the bound (5.8)
of Xy 1(H) asq — 1°.

We now treat thej-Laguerre polynomial§L® (x; ¢)}, [25]. The corresponding,,’s
andg,’s are given by
_ 1— qn 1— qn-‘roH—l
- (1- q)q2n+a 1- q)q2n+a+1
_ (1-g"HA—-q"")

’Bn - (1 _ q)2q4n+2a71 '

It is easy to see that the roots of (5.4) with= ‘—11 are monotone im, thus theorem 5.1
shows that the zeros of theLaguerre polynomialL;‘}‘)(z; q) are in(Ay, By) where Ay
and By are the roots of

(x —ay-1)(x —ay_2) =4Bn-1 (5.11)

(5.9)

Un

(5.10)
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and thea’s and g’s are given by (5.9) and (5.10). The main termAnr, for sufficiently
large N is

q—2N+l—a
A=t [A+A+¢)+ V167 + A+ 92M— D7 +0@ ™).  (512)
2(1—q)

Mathematica shows that the function
16x3 + (1 + x)2(1 — x?)?

is monotonic for 0< x < 1. Thus the quantity in square brackets in (5.12) increases with
g and is bounded above by its valuegat= 1, namely 8. ThusBy < 4¢2V*t1-2/(1 — ¢),
an estimate, which in the special case= 0 is sharper than (3.8).

6. Weak exponential weights

In this section we study the largest zero for polynomials orthogonal with respect to weak
exponential weights (1.17). Note that the Stieljes—Wigert polynomials [10] are special
g-Laguerre polynomials and are orthogonal with respect to a weak exponential weight
function with m = 2. Thus we expect the limiting behaviour of the largest zeros of
the polynomials orthogonal with respect g, (x) to resemble the largest zeros of the
Laguerre polynomials, for example they should increase exponentially. It turned out that
the qualitative behaviour of the correction terms depends:@and that the case = 2 is
an exceptional case.

As before, it is convenient to use the parametrization

g=¢e" 0< B <o0. (6.1)

The normalization condition for the density is

1y,
NZZ/O by u'(y) dy. (6.2)

Using the fact that

1 (nx)m?!
,3m71 x

u'(x) =

we obtain
N 1 Yinb +Inpym-1
2npmntJo  J1T-1)
The integrand can be expanded by the binomial theoremMrid now expressed as a
polynomial in Inb of degreem — 1. Thus we at arrive at the asymptotic expansion

(6.3)

1
N = T [(nb)™t — 2(m — 1) In2(Inb)" 2 + O((INb)"~3)] (6.4)
asb — oo. Solving forb in terms of N, we find
b ~ exp[(2N)Y "D g] = =@, (6.5)

This indicates that the zeros are well separated, as is the case with the zerag-batheerre
polynomials [25].

We now proceed to determine the further refinement to the first crude estimate given
by (6.5). To accomplish this the behaviour ®fx) for x — b~ is required. However, for
m > 2, it appears that no explicit formula fer(x) is available. Therefore we shall only
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give an asymptotic formula for the quanti§(b), introduced in the previous sections. The

density is
1 b—x [ (ny)"1 dy
0wt = gz |, iy 5o o

We usedo,, (x) to exhibit the dependence on. To compute the above principle value
integral we use a generating function technique It is clear that

ZU (x),B’" Tym—t b —x beX[leny) dy
" Vyb=y) y—x

F e e

Therefore [14, equation (2.228.3)] ylelds

,Bm 1 wn— 1 bw—l b —
Zom(x) Ty =_2n2/ - B(——,w+2)2F1(1 w,L;31-x/b).  (6.8)

In the limit x — b~, we find
Om(x) ~ Gm(b)Vb — x x—>b". (6.9)
In this case th&5’'s have the generating function

00 ﬂmwm _ bw73/2 F(_%)F(w + %)
2 Gna®) == == T(w+1)

Fw+3)
(b )3/2 eXp(w(ln b))m

Since bothlI'(w + %) andI'(w + 1) are analytic functions ofv in the neighbourhood of
w = 0 [12], then (6.10) shows thai;(b) = 0 andG,,(b) is a polynomial in Irb of degree
m — 2, form > 1. Indeed we have
G2 ,3m+l _ 1 (|n b)'”
(m + 1)! 7 b3/2
This gives the following asymptotics for the largest zeros of polynomials orthogonal with
respect to weak exponential weights:

IBm71
2(m — 1) (Inp)ym-2

(6.10)

+ lower-order terms (6.11)

2/3
a~b—c1b[ i| as b — oo (6.12)

where
c1 ~ (3m)%3. (6.13)

Here again it is likely that, = 2(6/3)i;.

Observe that forn = 2, the correction term in (6.12) is of the same order as the first
term, the same was noted in the case ofgHeaguerre and thg —*-Hermite polynomials.
This is not surprising since the largest zero\as> oo is controlled by the large-behaviour
of the potentiaks(x).

We indicate here that in order to obtain the lower-order terms in the expansion (6.11)
it is useful to make use of the duplication formula of the Gamma function to write the
right-hand side of (6.10) as

w 1 rCw+1)
W exqw In(zb))
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Equation (1.17.2) in [12] is

0 —1) n
log(I'(1+2)) = —yz + Z e (6.15)

n=2 n

which implies

'+ 2w) X (=Dt 2t -1)
(i) -2 2 5

21+ w) = ¢(n) w". (6.16)

n=2
Thus one can obtain a few of the lower-order terms in (6.12), if needed.
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